Computational Complexity and Truth in Auctions

Dave Buchfuhrer Chris Umans

May 12, 2009

What is an Auction?

Auctions

Suppose you have m items that you wish to auction off. You hold an auction, and n bidders arrive.

Auctions

Suppose you have m items that you wish to auction off. You hold an auction, and n bidders arrive.

- Each bidder makes bids on subsets of the items

Auctions

Suppose you have m items that you wish to auction off. You hold an auction, and n bidders arrive.

- Each bidder makes bids on subsets of the items
- You assign items to the bidders

Auctions

Suppose you have m items that you wish to auction off. You hold an auction, and n bidders arrive.

- Each bidder makes bids on subsets of the items
- You assign items to the bidders
- You charge the bidders for their winnings

What is an Auction?

Example: Video Game Auction

Example: Video Game Auction

Example: Video Game Auction

Value: 60

Value: 80

Auction Performance

What does it mean for an auction to perform well?

Auction Performance

What does it mean for an auction to perform well?

- Each bidder receives some value from the set received

Auction Performance

What does it mean for an auction to perform well?

- Each bidder receives some value from the set received
- The sum of the values for each player is the social welfare

Auction Performance

What does it mean for an auction to perform well?

- Each bidder receives some value from the set received
- The sum of the values for each player is the social welfare
- The social welfare does not depend on charges to bidders

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

- To counter greed, each player is charged for this harm

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

- To counter greed, each player is charged for this harm
- Intuitively, the player wants the social welfare maximized

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

- To counter greed, each player is charged for this harm
- Intuitively, the player wants the social welfare maximized
- This all depends on being maximal-in-range

Maximal-In-Range

- An allocation function maps bids to distributions of items
- Each allocation function f has a range R
- f is Maximal-In-Range if it maximizes over R

Maximal-In-Range

- An allocation function maps bids to distributions of items
- Each allocation function f has a range R
- f is Maximal-In-Range if it maximizes over R

Example

Grouping all items into one lot, we can maximize over a range of size n. This yields a $1 / n$ approximation.

What's the Problem?

The social welfare may seem easy to maximize, but the bidders don't necessarily like to share information

What's the Problem?

The social welfare may seem easy to maximize, but the bidders don't necessarily like to share information

- A standard VCG auction can be used

What's the Problem?

The social welfare may seem easy to maximize, but the bidders don't necessarily like to share information

- A standard VCG auction can be used
- but it is NP-hard to determine the best allocation

What's the Problem?

The social welfare may seem easy to maximize, but the bidders don't necessarily like to share information

- A standard VCG auction can be used
- but it is NP-hard to determine the best allocation
- An FPTAS exists to approximate the social welfare

What's the Problem?

The social welfare may seem easy to maximize, but the bidders don't necessarily like to share information

- A standard VCG auction can be used
- but it is NP-hard to determine the best allocation
- An FPTAS exists to approximate the social welfare
- but using it encourages bidders to game the system

What's the Problem?

The social welfare may seem easy to maximize, but the bidders don't necessarily like to share information

- A standard VCG auction can be used
- but it is NP-hard to determine the best allocation
- An FPTAS exists to approximate the social welfare
- but using it encourages bidders to game the system
- It is difficult to have both computability and truthfulness

The Model

- Each bidder has a valuation function v_{i}
- For each item j, bidder i has a value $v_{i, j}$
- Each bidder i has a budget b_{i}
- For each subset $S \subseteq[m]$ of the items,

$$
v_{i}(S)=\min \left(\sum_{j \in S} v_{i, j}, b_{i}\right)
$$

Previous Work

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- n-bidder auctions can't approximate better than $(n+1) / 2 n$ (Mossel et al., 2009)

Previous Work

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- n-bidder auctions can't approximate better than $(n+1) / 2 n$ (Mossel et al., 2009)
- The key to both of of these was VC dimension

Previous Work

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- n-bidder auctions can't approximate better than $(n+1) / 2 n$ (Mossel et al., 2009)
- The key to both of of these was VC dimension
- We show that n-bidder actions can't do better than $1 / n$

Allocate All Items

- Associate a vector in [2] ${ }^{m}$ with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3

Allocate All Items

- Associate a vector in [2] ${ }^{m}$ with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2] ${ }^{m}$
- 1221 means bidder 1 values 1 and 4 , bidder 2 values 2 and 3

Allocate All Items

- Associate a vector in [2] ${ }^{m}$ with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2] ${ }^{m}$
- 1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3
- All values are 1 or 0 , budgets are infinite

Allocate All Items

- Associate a vector in [2] ${ }^{m}$ with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2] ${ }^{m}$
- 1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3
- All values are 1 or 0 , budgets are infinite
- Social welfare is just how well the vectors match

Large Range

- Fix an allocation r in the range
- Pick a random value vector v

Large Range

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare $m / 2$

Large Range

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare $m / 2$
- By Chernoff bounds, $m(1 / 2+\epsilon)$ is exponentially unlikely

Large Range

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare $m / 2$
- By Chernoff bounds, $m(1 / 2+\epsilon)$ is exponentially unlikely
- So it takes an exponentially large range to do well on all v

VC Dimension

- Since $|R|=2^{\alpha m}, R$ has VC dimension δm (Sauer's lemma)

VC Dimension

- Since $|R|=2^{\alpha m}, R$ has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly

VC Dimension

- Since $|R|=2^{\alpha m}, R$ has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly
- Using this subset as advice, we can solve welfare maximization

VC Dimension

- Since $|R|=2^{\alpha m}, R$ has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly
- Using this subset as advice, we can solve welfare maximization
- So approximating to $1 / 2+\epsilon$ is impossible unless $N P \subseteq P /$ poly

So what's the problem?

- We can't assume all items are allocated

So what's the problem?

- We can't assume all items are allocated
- So we focus in on some items where it's close to true

So what's the problem?

- We can't assume all items are allocated
- So we focus in on some items where it's close to true
- VC dimension doesn't generalize well to more than 2 bidders

So what's the problem?

- We can't assume all items are allocated
- So we focus in on some items where it's close to true
- VC dimension doesn't generalize well to more than 2 bidders
- So we form a meta-bidder out of all but one of the bidders

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- For each S, T_{S} projects R to S

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=12211221 \\
& r=12211221
\end{aligned}
$$

- For each S, T_{S} projects R to S

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=12211221 \\
& r=12211221
\end{aligned}
$$

- For each S, T_{S} projects R to S
- T_{S} filters out $r \in R$ such that any $s \in S$ is unassigned

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
v & =12211221 \\
t & =12211221
\end{aligned}
$$

- For each S, T_{S} projects R to S
- T_{S} filters out $r \in R$ such that any $s \in S$ is unassigned
- $t \in T_{S}$ covers v if it is the projection of v to S

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

- c is constant when $|S|=\alpha m$, for $\alpha<\epsilon$

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$
- Solution: Map $[n]^{m} \rightarrow[2]^{n m}$
- Simply replace i with $(0, \ldots, 0,1,0 \ldots, 0)$

$$
1231 \rightarrow 100010001100
$$

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$
- Solution: Map $[n]^{m} \rightarrow[2]^{n m}$
- Simply replace i with $(0, \ldots, 0,1,0 \ldots, 0)$

$$
1231 \rightarrow 100010001100
$$

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$
- Solution: Map $[n]^{m} \rightarrow[2]^{n m}$
- Simply replace i with $(0, \ldots, 0,1,0 \ldots, 0)$

$$
1231 \rightarrow 100010001100
$$

- 1 means i gets it, 0 means someone else does

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$
- Solution: Map $[n]^{m} \rightarrow[2]^{n m}$
- Simply replace i with $(0, \ldots, 0,1,0 \ldots, 0)$

$$
1231 \rightarrow 100010001100
$$

- 1 means i gets it, 0 means someone else does
- By sacrificing a factor of n, we can fix i

Embedding Subset Sum

Now, we have an algorithm which finds the best assignment where items either go to bidder i or someone else

Embedding Subset Sum

Now, we have an algorithm which finds the best assignment where items either go to bidder i or someone else

- Let a_{1}, \ldots, a_{m} be a subset sum instance with target τ

Embedding Subset Sum

Now, we have an algorithm which finds the best assignment where items either go to bidder i or someone else

- Let a_{1}, \ldots, a_{m} be a subset sum instance with target τ
- For each bidder other than $i, b=\infty, v_{j}=a_{j}$
- For bidder $i, b=2 \tau, v_{j}=2 a_{j}$

Embedding Subset Sum

Now, we have an algorithm which finds the best assignment where items either go to bidder i or someone else

- Let a_{1}, \ldots, a_{m} be a subset sum instance with target τ
- For each bidder other than $i, b=\infty, v_{j}=a_{j}$
- For bidder $i, b=2 \tau, v_{j}=2 a_{j}$
- A subset sums to τ iff we get welfare $\sum_{j} a_{j}+\tau$

Done

So if a maximal-in-range mechanism approximates the social welfare to $1 / n+\epsilon$, subset sum is in $P /$ poly

Conclusions and Open Problems

- We showed that for any constant n, no maximal-in-range mechanism can do better than $1 / n$

Conclusions and Open Problems

- We showed that for any constant n, no maximal-in-range mechanism can do better than $1 / n$
- Non-constant number of bidders remains an open problem

Conclusions and Open Problems

- We showed that for any constant n, no maximal-in-range mechanism can do better than $1 / n$
- Non-constant number of bidders remains an open problem
- The more general question of how well truthful mechanisms can perform is left open

