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An allocation function maps bids to distributions of items

Each allocation function f has a range R

f is Maximal-In-Range if it maximizes over R

Example

Grouping all items into one lot, we can maximize over a range of
size n. This yields a 1/n approximation.
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The social welfare may seem easy to maximize, but the bidders
don’t necessarily like to share information

A standard VCG auction can be used

but it is NP-hard to determine the best allocation

An FPTAS exists to approximate the social welfare

but using it encourages bidders to game the system

It is difficult to have both computability and truthfulness
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The Model

Each bidder has a valuation function vi

For each item j , bidder i has a value vi ,j

Each bidder i has a budget bi

For each subset S ⊆ [m] of the items,

vi (S) = min

∑
j∈S

vi ,j , bi
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Inapproximability for Combinatorial Public Projects (Schapira,
Singer, 2008)

n-bidder auctions can’t approximate better than (n + 1)/2n
(Mossel et al., 2009)

The key to both of of these was VC dimension

We show that n-bidder actions can’t do better than 1/n
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1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3

All values are 1 or 0, budgets are infinite

Social welfare is just how well the vectors match
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Large Range

Fix an allocation r in the range

Pick a random value vector v

In expectation, r will achieve social welfare m/2

By Chernoff bounds, m(1/2 + ε) is exponentially unlikely

So it takes an exponentially large range to do well on all v
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VC Dimension

Since |R| = 2αm, R has VC dimension δm (Sauer’s lemma)

So there is a subset of δm items on which we can solve exactly

Using this subset as advice, we can solve welfare maximization

So approximating to 1/2 + ε is impossible unless NP ⊆ P/poly
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So what’s the problem?

We can’t assume all items are allocated

So we focus in on some items where it’s close to true

VC dimension doesn’t generalize well to more than 2 bidders

So we form a meta-bidder out of all but one of the bidders
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Allocated Subsets

Coverings

Suppose we have an approximation ratio of 1/n + ε

For every v ∈ [n]m, some r ∈ R matches (1/n + ε)m indices

v = 122221112212

r = 111221012210

For each S , TS projects R to S

TS filters out r ∈ R such that any s ∈ S is unassigned

t ∈ TS covers v if it is the projection of v to S
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Allocated Subsets

Coverings Continued

If we fix |S |, each v ∈ [n]m is covered
((1/n+ε)m

|S|
)

times

v = 122221112212

r = 111221012210

Each t ∈ TS covers nm−|S| valuations

v = ∗ ∗ ∗2 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗

So if

ncm

(
m

|S |

)
nm−|S | < nm

(
(1/n + ε)m

|S |

)
,

there must be a TS of size greater than ncm

c is constant when |S | = αm, for α < ε
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VC Dimension

Using Sauer’s lemma requires an exponential subset of [2]m

We have an exponential subset of [n]m

Solution: Map [n]m → [2]nm

Simply replace i with (0, . . . , 0, 1, 0 . . . , 0)

1231→ 100010001100

1 means i gets it, 0 means someone else does

By sacrificing a factor of n, we can fix i
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Embedding Subset Sum

Now, we have an algorithm which finds the best assignment where
items either go to bidder i or someone else

Let a1, . . . , am be a subset sum instance with target τ

For each bidder other than i , b =∞, vj = aj

For bidder i , b = 2τ , vj = 2aj

A subset sums to τ iff we get welfare
∑

j aj + τ



Introduction An Easy Proof Our Work Conclusions

Subset Sum

Embedding Subset Sum

Now, we have an algorithm which finds the best assignment where
items either go to bidder i or someone else

Let a1, . . . , am be a subset sum instance with target τ

For each bidder other than i , b =∞, vj = aj

For bidder i , b = 2τ , vj = 2aj

A subset sums to τ iff we get welfare
∑

j aj + τ



Introduction An Easy Proof Our Work Conclusions

Subset Sum

Embedding Subset Sum

Now, we have an algorithm which finds the best assignment where
items either go to bidder i or someone else

Let a1, . . . , am be a subset sum instance with target τ

For each bidder other than i , b =∞, vj = aj

For bidder i , b = 2τ , vj = 2aj

A subset sums to τ iff we get welfare
∑

j aj + τ



Introduction An Easy Proof Our Work Conclusions

Subset Sum

Embedding Subset Sum

Now, we have an algorithm which finds the best assignment where
items either go to bidder i or someone else

Let a1, . . . , am be a subset sum instance with target τ

For each bidder other than i , b =∞, vj = aj

For bidder i , b = 2τ , vj = 2aj

A subset sums to τ iff we get welfare
∑

j aj + τ



Introduction An Easy Proof Our Work Conclusions

Subset Sum

Done

So if a maximal-in-range mechanism approximates the social
welfare to 1/n + ε, subset sum is in P/poly
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Conclusions and Open Problems

We showed that for any constant n, no maximal-in-range
mechanism can do better than 1/n

Non-constant number of bidders remains an open problem

The more general question of how well truthful mechanisms
can perform is left open
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